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1 Gauge fixing and ghost Lagrangian

1.1 Classical QCD Lagrangian

LQCD = −1

4
F a
µνF

a,µν + Q̄ (i /D −mq)Q (1)

with field-strength tensor

F a
µν = (∂µA

a
ν − ∂νAaµ)− gsfabcAbµAcν (2)

and the covariant derivative
Dµ = ∂µ + igsT

aAaµ (3)

Invariance under gauge transformations

∆Q(x) = −igsω
a(x)T aQ(x)

∆Aaµ = ∂µω
a + gsf

abcωbAcµ
(4)

1.2 Gauge fixing and ghost Lagrangian

Covariant gauge fixing term

Lgf = − 1

2ξ
(∂µA

a,µ)2 (5)

The Fadeev-Popov Lagrangian is given by

LFP = (∂µc̄a)D
(ad)
ab,µc

b = (∂µc̄a)(∂µδab + gsf
abcAc,µ)cb (6)
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with the ghost fields ca and anti-ghost fields c̄a, scalar fields in the adjoint representation of
SU(3), which, however, are assigned Fermi-statistic. These fields never appear as external
states, so the spin-statistics theorem is not violated by the wrong statistics.

The ghost fields are anticommuting scalars. This implies that

(c̄acb)† = cb†c̄a† = −c̄a†cb† (7)

The Lagrangian is hermitian for the assignment

ca† = ca c̄a† = −c̄a (8)

It is not consistent with a hermitian interaction term with the gauge boson to take the
antighost as the conjugate of the ghost. The antighost could be made hermitian by a
redefinition c̄→ ic̄ but we will keep the form of the Lagrangian given above.

More generally, one can consider a gauge fixing term of the form

Lgf = − 1

2ξ
(fa[Aµ])2 (9)

with some gauge-fixing functional fa[Aµ]. The Fadeev-Popov Lagrangian then involves the
gauge variation of the gauge-fixing term:

LFP =

∫
d4y c̄a(x)

δfa[A′µ(x)]

δωb(y)
cb(y) = c̄a(x)Mabcb(x) (10)

where A′µ = Aµ + ∆Aµ and the last expression holds for a local gauge-fixing functional.
For the covariant gauge fixing one obtains the previous result:

fa = ∂µA
a,µ ⇒ Mab = ∂µ(∂µδab + gsf

abcAµc ) (11)

1.3 Nakanishi-Lautrup auxiliary field

The gauge-fixing Lagrangian can be rewritten in terms of the so-called Nakanishi-Lautrup
auxiliary fields Ba as

Lgf = Bafa +
ξ

2
(Ba)2 (12)

as can be seen using the equation of motion for the auxiliary fields

0 =
∂L
∂Ba

= ξBa + fa (13)

1.4 Example for relevance of ghosts

Consider the matrix element for qq̄ → gg
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Define the “reduced” amplitude obtained by removing both of the gluon polarization vec-
tors:

M = εµ∗(k1)εν∗(k2)M̃µν (14)

One finds that the reduced amplitude satisfies the identity

iM̃µνk
µ
1 = v̄(p2)(−igs)T

c,i
j γµu(p1)

−i

(p1 + p2)2
(−gsfabckµ1k2,ν) (15)

In QED the Ward identities imply that for the analogous photon amplitude the right-hand
side vanishes. In non-abelian gauge theories the right-hand side is instead given by the
matrix element for the (unphysical) “process” qq̄ → c̄a(k1)cb(k2):

iMck1 c̄k2
=

q(p1)

q̄(p2)

c(k1)

c̄(k2)

= v̄(p2)(−igs)T
c,i
j γµu(p1)

−i

(p1 + p2)2
(−gsf backµ1 ) (16)

Therefore one finds that the violation of the WI for the reduced amplitude is proportional
to the ghost diagram:

M̃µνk
µ
1 = −k2,νMck1 c̄k2

(17)

This identity can be derived from the so-called BRST invariance of the gauge-fixed La-
grangian.

2 BRST transformations

2.1 Definition of the BRST transformation

The gauge-fixed QCD Lagrangian including the Fadeev-Popov Lagrangian is invariant
under a global transformation parametrized by a Grassmann-valued parameter θ. This
transformation was discovered by Becchi, Rouet, Stora, and Tyutin (BRST). We write the
transformations of a general field Ψ as

∆θΨ = θδBΨ (18)

3



The transformations of the physical fields are obtained from the infinitesimal gauge trans-
formations by replacing the parameters ωa by the product of the ghost fields and the
Grassmann number θ:

δBA
a
µ = ∂µc

a + gsf
abccbAcµ (19)

δBQ(x) = −igsc
a(x)T aQ(x) (20)

The transformations of the ghost fields and the auxiliary fields are taken as

δBc
a =

1

2
gsf

abccbcc (21)

δBc̄
a = Ba (22)

δBB
a = 0 (23)

2.2 BRST charge

We introduce the generator of BRST transformations QB, the so-called BRST charge:

∆θΨ = θδBΨ ≡ [iθQB,Ψ]. (24)

The BRST charge can be constructed explicitly using the Noether theorem [2]. The BRST
transformations of bosonic fields are generated by commutators with the BRST charge,
the transformations of fermionic fields by anticommutators:

[QB,Φ]± = −iδBΦ (25)

With the above definition of the conjugations of the ghost and anti-ghost fields, the BRST
charge is hermitian:

[QB, A
a]† = i(∂µc

a + gsf
abccbAcµ) = [Aa, QB] (26)

{QB, Q}† = −gsQ†T aca = gsc
aQ†T a = {Q†, QB} (27)

{QB, c̄
a}† = iBa = {c̄a†, QB} (28)

{QB, c
a}† =

i

2
gsf

abccccb = − i

2
gsf

abccbcc = {ca†, QB} (29)

The BRST transformation of products of fields is defined as

∆θ(Ψ1 . . .Ψn) = [iθQB,Ψ1 . . .Ψn]

= θ(δBΨ1) . . .Ψn + . . . θ(−1)siΨ1 . . . (δBΨi) . . .Ψn

≡ θδB(Ψ1 . . .Ψn)

(30)

where si counts the number of fermionic fields before Ψi. The last line defines the action
of δB on products of fields.

Note that we have

δ2
B(Ψ1Ψ2) = δB [(δBΨ1)Ψ2 + (−1)s1Ψ1(δBΨ2)]

= (δ2
BΨ1)Ψ2 − (−1)s1(δBΨ1)(δBΨ2) + (−1)s1(δBΨ1(δBΨ2) + Ψ1(δ2

BΨ2)

= (δ2
BΨ1)Ψ2 + Ψ1(δ2

BΨ2)

(31)
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2.3 Properties

The BRST transformation has the following properties:

1. it leaves the Lagrangian invariant

2. it is nilpotent, i.e. for any field one has

δ2
BΦ = 0 (32)

Because of (31) this implies automatically that δ2
BF = 0 for any functional F of the

fields.

3. The sum of the gauge-fixing and ghost Lagrangians can be written as

Lgf + LFP = δBF (33)

with

F = c̄a(fa +
ξ

2
Ba) (34)

For the choice of the gauge fixing function fa = ∂µA
a,µ this is easily seen:

δBF = Ba(∂µA
a,µ +

ξ

2
Ba)− c̄a∂µ(∂µca + gsf

abccbAc,µ) (35)

For a general gauge fixing functional one uses

δBf
a[A] =

∫
d4y

δfa[A′µ(x)]

δωb(y)
θcb =Mabθcb (36)

so that

δBF = Ba(fa +
ξ

2
Ba)− c̄aMabcb (37)

The BRST invariance of the Lagrangian follows from the two other properties and the fact
that the classical QCD Lagrangian is invariant by construction.

2.3.1 Proof of nilpotency

It remains to be shown that the BRST transformation is nilpotent.
The nilpotency is obvious for the antighost and the auxiliary field (in fact, this is the

motivation for introducing the auxiliary field, since the nilpotency holds only after use of
the equations of motion if the formulation without auxiliary fields is used).

For the quark field we have

δ2
BQ = −igs ((δBc

a)T aQ− caT aδBQ)

= −ig2
s

(1

2
cbccfabcT aQ+ i cbccT bT c︸ ︷︷ ︸

1
2
cbcc[T b,T c]

Q
)

= 0

(38)
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For the gluon field, the repeated application of the BRS transformation gives

δ2
BA

a
µ = ∂µδBc

a + gsf
abc(δBc

b)Acµ − gsfabccbδBA
c
µ

=
gs
2

[
fabc∂µ(cbcc) + gsf

abcf bdecdceAcµ − 2fabccb
(
∂µc

c + gsf
cdecdAeµ

)] (39)

This vanishes as can be seen separately for the derivative terms and the terms with the
gauge fields, using the anticommuting nature of the ghosts

fabc
(
∂µ(cbcc)− 2cb∂µc

c
)

= fabc
(
∂µ(cbcc)− cb(∂µcc)− (∂µc

b)cc
)

= 0 (40)

fabcf bdecdceAcµ − 2fabcf cdecbcdAeµ = Acµ
(
fabcf bdecdce + 2fabef edccdcb

)
= Acµc

dce
(
fabcf bde + 2faebf bdc

)
= Acµc

dce
(
fabcf bde + faebf bdc − fadbf bec

)
= 0 (41)

In the last line the Jacobi identity

f bcdfade + fabdf cde + f cadf bde = 0. (42)

was used. Since the term ∼ cA in the transformation law of the gauge field is the same
as for a matter field in the adjoint representation, the cancellations in this case work in
the same way as for the quark term, up to replacing the generators in the fundamental by
those in the adjoint representation.

The last step is the proof of nilpotency for the transformation of the ghost fields:

δ2
Bc

a =
1

2
gsf

abc
[
(δBc

b)cc − cb(δBc
c)
]

=
1

4
g2
sf

abc
[
f bdecdcecc − f cdecbcdce

]
=

1

2
g2
sf

abcf bdecccdce = 0

(43)

Since the product of three ghost fields does not change sign under cyclic permutations, this
expression vanishes as a result of the Jacobi identity.

3 BRST symmetry and states in a gauge theory

The vector space of states of a gauge theory contains four modes of the gauge field and
the ghosts and antighosts, whereas the classification of states using the representations of
the Poincaré group shows that only two transverse polarizations of the vector fields should
appear. The BRST symmetry allows to define “physical” states consistently and allows to
show that the unphysical states decouple.
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3.1 Physical states

The nilpotency of the BRST transformation implies also

Q2
B = 0 (44)

This can be seen by computing the double commutator, for instance for a bosonic field,

0 = δ2
BΦ = {iQB, [iQB,Φ]} = −(Q2

BΦ−QBΦQB +QBΦQB + ΦQ2
B) = −[Q2

B,Φ] (45)

This implies Q2
B = 0. Note that the BRST transformation changes the ghost number by

one, so that Q2
B must have ghost number two. This excludes the possibility that Q2

B ∝ 1.
Because of the nilpotency of Q, states that are obtained by applying QB to another

arbitrary state (so called ‘BRS exact states’) have vanishing norm:

|ψ〉 = QB |η〉 : 〈ψ|ψ〉 = 0 ∀ |η〉 (46)

States that are annihilated by the BRS charge are called ‘BRS closed’. They are orthogonal
to the exact states:

〈ψ|φ〉 = 〈η|QB|φ〉 = 0 ∀ |ψ〉 = QB |η〉 , QB |φ〉 = 0 (47)

Therefore we can decompose the Hilbert space into orthogonal subspaces. Because of the
nilpotency of QB, a closed state stays closed if one adds an arbitrary exact state.

One can show (see e.g. [2]) that provided the BRS closed states have positive norm,
it is consistent to define the physical states of the theory as closed states modulo exact
states:

QB |ψphys〉 = 0

|ψphys〉 ∼ |ψphys〉+QB |η〉
(48)

In mathematical terms, this is the cohomology of the operator Q.

3.2 Asymptotic fields

Consider the asymptotic in/out states that satisfy the free equations of motion.
They admit the same mode decomposition as the free fields, i.e. for the gauge field

(suppressing colour indices)

Aµ(x) =
∑

λ=±,,L,S

∫
d3p

(2π)32p0

(
aλ(~p)ε

µ
λ(p)e−ipx + a†λ(~p)ε

µ,∗
λ (p)eipx

)
(49)

and the ghost fields

c(x) =

∫
d3p

(2π)32p0

(
c(~p)e−ipx + c†(~p)eipx

)
|p0=|~p| (50)

c̄(x) =

∫
d3p

(2π)32p0

(
c̄(~p)e−ipx − c̄†(~p)eipx

)
|p0=|~p| (51)
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The sum over the polarization vectors is over the two transverse polarizations with po-
larization vectors ε± and two additional “longitudinal” and “scalar” polarizations given
by

εµL(~p) =

(
|~p|
~p

)
= pµ εµS(~p) =

1

2|~p|2

(
|~p|
−~p

)
(52)

The polarization vectors are normalized as

(ελ(p) · ε∗λ′(p)) = −δλλ′ , λ, λ′ = ± (53)

(εS(p) · εL(p)) = 1 (54)

(εS/L(p) · εS/L(p)) = 0 (55)

The BRST transformations of asymptotic fields in Feynman gauge (ξ = 1) are obtained
by the limit gs → 0:

[iQB, A
a,µ(x)] = ∂µc

a(x) (56)

{iQB, c
a(x)} = 0 (57)

{iQB, c̄
a(x)} = Ba(x) = −∂µAa,µ(x) (58)

[iQB, B
a(x)] = 0 (59)

Inserting the mode decomposition and comparing coefficients, one finds the transformations
of the creation operators

[QB, a
†
±(~p)] = [QB, a

†
S(~p)] = 0 (60)

[QB, a
†
L(~p)] = ca(~p) (61)

{QB, c
†(~p)} = 0 (62)

{QB, c̄
†(~p)} = −a†S(~p) (63)

[QB, a
†
S(x)] = 0 (64)

Since the vacuum satisfies QB |0〉 = 0 the states obtained by acting with the creation
operator on the vacuum are classified as follows:

• BRST exact (zero-norm) states:

|c〉 = QB |g, L〉 (65)

|g, S〉 = −QB |c〉 (66)

(67)

• BRST closed but not exact states:

|g,±〉 (68)
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• physical states: equivalence classes of closed modulo exact states:

|g,±〉 ∼ |g,±〉+ α |g, S〉 (69)

The physical Hilbert space Hphys is usually defined as the equivalence class of the
BRST-closed modulo exact states with ghost number zero. One can show [2] that
because of the scalar products (54) and (55) the annihilation and creation operators
of the unphysical modes satisfy the commutation relation

[aS(~k), a†L(~p)] = δ3(~k − ~p) (70)

This implies that the S-matrix element for the state |g, S〉 is obtained by Feynman
diagrams calculated with the polarization vector εL:

〈. . . Aµa†S|0〉 → 〈. . . |0〉 ε
µ
L (71)

Therefore the equivalence of the states (69) implies the equivalence of the polarization
vectors

εµ± ∼ εµ± + αεµL = εµ± + αpµ, (72)

i.e. the usual invariance under gauge transformations.

4 Consequences of BRST invariance

The BRST invariance is essential for the proofs of unitarity, gauge independence and
renormalizability of gauge theories. To illustrate this, we briefly sketch how it can be used
to show the gauge independence of S-matrix elements and to derive the Slavnov-Taylor
identities.

4.1 Gauge independence

We have seen above that the gauge fixed Lagrangian has the form

L = L0 + δBF (73)

with

F = c̄a(fa +
ξ

2
Ba) (74)

Consider a variation of the gauge-fixing functional

fa[A]→ fa[A] + ∆fa[A], (75)

which implies the variation of the gauge fixing Lagrangian

δL = δB(c̄aδfa) = {iQB, c̄
a∆fa[A]}. (76)
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One can show that the change of a matrix element under the variation of the gauge fixing
term is given by

〈φphys|ψphys〉f+∆f − 〈φphys|ψphys〉f =

∫
d4x 〈φphys|iδL(x)|ψphys〉f

= i

∫
d4x 〈φphys|{iQB, c̄

a(x)∆fa[A(x)]}|ψphys〉

= 0,

(77)

which vanishes because of the definition of the physical states. For a more careful discussion
including the LSZ reduction and renormalization see [2, 3].

4.2 Slavnov Taylor identities

We can derive the general Slavnov Taylor Identities of the theory by sandwiching the
commutator (or anticommutator) of an arbitrary products of fields with the BRS-charge
between physical fields:

0 = 〈φphys|T[[iQB,Ψ1Ψ2 . . .Ψn]±]|ψphys〉

=
∑
i

(−)s(i) 〈φphys|T[Ψ1 . . . δBΨi . . .Ψn]|ψphys〉 (78)

As example consider identity obtained from the matrix element

〈0|c̄a(x)Aµ,b(y)|Q, Q̄〉phys (79)

The STI implies

0 = 〈0|(δBc̄
a(x))Aµ,b(y)|Q, Q̄〉 − 〈0|c̄a(x)δBA

µ,b(y)|Q, Q̄〉 (80)

i.e.
〈0| Ba(x)︸ ︷︷ ︸

=−∂µAa

Aµ,b(y)|Q, Q̄〉 = 〈0|c̄a(x)(∂µc
b + gsf

abccbAcµ)(y)|Q, Q̄〉 (81)

At tree-level the bilinear term in the transformation of the gluon field does not contribute
and one has the relation

∂x,µ 〈0|Aaµ(x)Aµ,b(y)|Q, Q̄〉 = ∂y,µ 〈0|c̄a(x)cb(y)|QQ̄〉 (82)

Performing the LSZ reduction on the photon and ghost fields one obtains the identity (17)

M̃µνk
µ
1 = −k2,νMck1 c̄k2

(83)

found previously by an explicit calculation. Note that the ghost propagator connects anti-
ghost and ghost fields so the LSZ reduction of an antighost field gives a ghost amplitude.
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